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a b s t r a c t

In this work, drug release from matrices with an inert nucleus using Monte Carlo simulation was studied.
Drug-excipient systems were simulated, where the drug is a soluble material while the excipient is a
non-soluble material. In the center of these devices, an inert nucleus was placed. The release of the drug
was unidirectional and the results were fitted to the square root of time law (Higuchi law), the power law
eywords:
ercolation theory
rug release
atrix systems
onte Carlo simulation

nomalous diffusion

and the Weibull equation. The percolation threshold of the drug was found to be near 0.35 close to the
expected value for the cubic lattice, the difference is due to the finite and rather small size of the systems
in study as well as to the fact that the lattice in use is not exactly cubic. Near the percolation threshold, the
parameters of the different release models presented a drastic change; this was due to a phase transition
of the system. On the other hand, it was found that the size of the matrix system modifies the transport
properties of the release platform. In general, the release kinetics was adequately described by the Weibull
equation.
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. Introduction

The pharmaceutical industry has been highly interested in the
evelopment of new drug release systems that improve their per-
ormance in time and space. These devices have been widely used
n humans and animals (Mathiowitz, 1999). Among these release
ystems, floating devices and high density devices “sinker” have
een designed as retention systems. The development of these sys-
ems is possible modifying the device density. The difference in
ensities between the biological fluid and the release device dic-
ates if the device remains on the surface or the bottom of the liquid
Rathbone et al., 1999; Takada and Yoshikawa, 1999). An alternative
o modify the release platform density is inserting an inert nucleus
n the matrix release platform. Drug release modeling and determi-
ation of the critical parameters of these systems is important to

nderstand and elucidate the mechanical and transport properties.
his way, process simulation has become an important and use-
ul tool in the development of new pharmaceutical products since
t allows the prediction of the drug release kinetics from chaotic

∗ Corresponding author. Tel.: +52 5556232089.
E-mail address: yeccanv@yahoo.com (R. Villalobos).
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edia (Bunde et al., 1985; Kosmidis et al., 2003a; Villalobos et
l., 2006a) or from homogeneous space (Kosmidis et al., 2003b;
illalobos et al., 2006b; Kosmidis and Macheras, 2007). In addition,

he percolation theory has also been an important ally in the sim-
lation by Monte Carlo methods, since it allows the calculation of
ritical parameters of the release system (Villalobos et al., 2005).

The percolation theory is a statistical theory that studies chaotic
r disorganized media where the components are randomly dis-
ributed in a lattice. A cluster is defined as a group of neighboring
ites occupied by the same substance; it is considered a percolating
luster when it extends from one extreme of the system to the other
Stauffer and Aharony, 1994). One of the most important parame-
ers of the percolation theory is the percolation threshold, which
s the maximum probability of finding an infinite or percolating
luster. At this point, the system properties suffer a drastic change,
disperse–continuous phase transition. However, the pharmaceu-

ical devices are of finite size, and it has been demonstrated that
nite-size effects will affect the value of the percolation threshold,
articularly when it is partially exposed the surface of the device

Villalobos et al., 2006b). The concepts of the percolation theory
ave been widely used in explaining the drug release, consider-

ng diffusion as the main release mechanism from a matrix device
Bonny and Leuenberger, 1991; Leuenberger et al., 1992; Tongwen
nd Binglin, 1998; Melgoza et al., 2001; Soriano et al., 1998).

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:yeccanv@yahoo.com
dx.doi.org/10.1016/j.ijpharm.2008.10.023
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mation of the system is that of a simple cubic lattice. Once formed
the cylindrical matrix an inert nucleus was inserted in the cen-
ter of the structure. This nucleus also has a cylindrical geometry,
where the diameter is the same as the height, l (see Fig. 1). The
L. Martínez et al. / International Jou

arious mathematical models have been developed to describe
rug release (Costa and Sousa, 2001); however, due to their sim-
licity and good adjustment, three models are commonly used:

Higuchi equation (1961, 1963) given by

Mt

M∞
= kHt1/2 (1)

here Mt and M∞ are the amounts of drug released at times t and
nfinity, respectively, and kH is a constant given by the characteris-
ics of the formulation.

The power law or Peppas model (1985) is given by:

Mt

M∞
= ktn (2)

here k is an experimentally determined parameter, and n is an
xponent that depends on the system geometry and the drug
elease mechanism (Costa and Sousa, 2001). It is evident that if
he exponent n in Eq. (2) takes a value of 0.5 the release will be
ickian type, but if it takes a value of 1.0, the drug release rate is
ime independent; this case corresponds to release kinetics of zero
rder. In the case of a plane sheet the mechanism that corresponds
o zero-order kinetics is known as Case II-transport (Peppas, 1985).
he power law just like the Higuchi model only describes the drug
elease at the interval that corresponds to Mt/M∞ < 0.6. The power
aw is considered as a generalization that encases two, apparently
ndependent, drug transport mechanisms: Fickian diffusion and
ase II-transport (Siepmann and Peppas, 2001).

The Weibull model can be used in almost all kinds of dissolution
nd release curves (Weibull, 1951; Costa and Sousa, 2001). When it
s applied to drug release from a matrix system, the Weibull equa-
ion expresses the fraction of drug released, Mt/M∞, as a function
f time t:

Mt

M∞
= 1 − exp(−atb) (3)

here a and b are the constants, a is the scale parameter, while b
s the shape parameter that characterizes the curve as exponen-
ial, sigmoid or parabolic (Costa and Sousa, 2001). This model has
een used to study the drug release when the release mechanism

s diffusion, fitting well along the whole release, both for Euclidean
atrices as well as fractal systems (Kosmidis et al., 2003a). Recently,
physical meaning has been associated to the constants of this
odel, on one hand, it has been determined that the value of b is an

ndicator of the drug transport mechanism through the polymeric
atrix (Papadopoulou et al., 2006), while the value of a is strongly

elated to the specific surface of the matrix device through which
elease is taking place (Kosmidis et al., 2003b).

Additionally, it has been showed that this stretched exponential
unction may be considered as the nearest approximate solution
or the entire drug release process (Kosmidis et al., 2003a). In this
ork, the treatment of the release problem, applying fractal kinetics

oncepts, has been studied as follows. The drug release process is
reated as the kinetic of reaction A + B → B, where the A particles are
raveling (diffusing) while the B particles are static. This scheme
ortrays the well-known trapping problem (Kopelman, 1989). In
his scenario, the number of particles present in the matrix system
t time t is Nt. It is expected that the particle escape rate will be
roportional to the fraction f(t) of drug particles that are able to
each an exit in a time interval dt. Initially all diffusing molecules
re homogeneously distributed over the drug percolation cluster.
ater, due to the release, a concentration gradient will appear. For

his, f(t) will be used to describe the segregation effects. Therefore,
differential equation is obtained:

dNt

dt
= −k′f (t)Nt (4)

F
r
t
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here k′ is a proportionality constant, f(t)Nt denotes the number
f drug particles that are able to reach an exit in a time interval
t, and the negative sign denotes that Nt decreases with time. In
his kinetic the number of B sites is constant and we have absorbed
he constant trap concentration [B], in the proportionality constant
′. The basic assumption of fractal kinetics is that f(t) has a form
pproximately to t−m. Therefore, when Eq. (4) is solved, the Weibull
quation is obtained (Kosmidis et al., 2003a). The relation between
he constants of Eqs. (3) and (4) are: a = k′/m and b = 1 − m.

It is pertinent to mention that there are some important differ-
nces between the drug release problem and the classical trapping
roblem, they are: (i) in drug release, the traps are not randomly
istributed inside the porous medium, but they are located only
t the device boundaries. Actually, the boundary fraction that is
art of the embedded drug clusters constitutes the trap sites; (ii)

n the trapping problem the porosity of the system, ε, does not
hange broadly, whereas in drug release the porosity of the medium
hanges notably; and (iii) drug release devices are finite size, so the
rug release from a matrix system is a finite-size problem (Kosmidis
t al., 2003a). Then, finite-size effects are in this case essential.
his means that the release processes will be affected by the size
f the device. The infinite systems are not useful for release pur-
oses because when the device size is increased till infinite, the
rug release becomes null.

The objective of this research is to study, by means of Monte
arlo methods, the effect of the insertion of an inert nucleus in
cylindrical matrix platform on the structural properties of the
atrix medium, the critical parameters of the system and the drug

ransport mechanism from this device.

. Methods

The Monte Carlo method is a numerical simulation based on
onsidering finite-size systems that uses a random number gener-
tor to mime the behavior of a system (Binder, 1997). In this study,
t was simulated a binary drug-excipient matrix system to which
n inert nucleus was inserted. First, this three-dimensional matrix
ystem was given a cylindrical shape with a 1:1 relation between
he diameter and height, h (see Fig. 1). The internal unitary confor-
ig. 1. Cylindrical device with an inert cylindrical nucleus. Each structure has a
elation 1:1 between diameter and height. h is the height of the device, while l is
he height of the inert nucleus.
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Table 1
Distribution of the occupied space in the release device.

h (l.u.) l (l.u.) Ntotal NN NM

27 15 14,283 2,235 12,048
37 21 37,777 6,657 30,676
47 25 77,691 11,026 66,666
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drug load for the matrices with a diameter of 27, 37 and 47 l.u.,
respectively. The standard error of the percolation thresholds was
bounded by 0.002. In contrast, the reported percolation threshold
for a cubic lattice exposing its total surface is 0.312 (Stauffer and
Aharony, 1994). However, later studies showed that by reducing the
, height of the device; l, height of the inert nucleus; l.u., lattice units; Ntotal , total
ites of the release device; NN , number of sites occupied by the inert nucleus; NM ,
umber of sites occupied by drug-excipient matrix.

pace occupied by the nucleus is a static volume, formed by sites
ccupied only by an inert, non-water-soluble material. This way,
he material from this nucleus does not contribute with material to
e released. The insertion of this type of nucleus is commonly used
o modify the density of the release device. The conformation of
he systems studied in the present research is described in Table 1.
n this table Ntotal represents the total sites that form the release
evice, NN the number of sites occupied by the inert-material cylin-
rical nucleus. This way, by subtracting NN to Ntotal, the number of
ites occupied by the drug-excipient matrix, NM, is obtained.

Then, the filling of the matrix takes place by randomly placing a
rug or excipient particle in each lattice site, according to an initial
rug-excipient composition. Each site of the lattice has a probabil-

ty that equals the initial drug load C0 of being occupied by a drug
article; or a probability 1 − C0 of being occupied by an excipient
article. Matrix systems were generated at the following initial drug

oads: 0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. Obviously, at
hose loads, the remaining fraction of the matrix was occupied by
xcipient particles. In this research, excipient particles are consid-
red to be the inert, insoluble and static part of the system, while
he drug particles are soluble and move through the adjacent empty
ites. It is assumed that the system hydrates instantly when placed
n the dissolution medium. To begin the release simulation, the
orosity is considered to be zero, meaning that no free sites are
ncountered, this is, all the sites of the matrix system will be taken
y drug or excipient particles. As the release goes on, the system
orosity becomes dynamic.

The release simulation is carried out considering a diffusive pro-
ess which is described by a random walk. The simple cubic lattice
as a connectivity of six and it is precisely through these neighbor-

ng sites where drug particles can move according to a random walk
sing the blind-ant algorithm (Stauffer and Aharony, 1994). In this
lgorithm the walker chooses randomly one of the six neighboring
ositions; if the site is taken by drug, excipient or inert material
rom the nucleus, the particle remains in place but if the site is
mpty, the particle moves to that position. With each attempt of
oving, either accepted or not, the time increases in a value equal

o 1/Nt, where Nt is the number of drug particles within the matrix.
o, when Nt particles have been chosen, it is considered an arbitrary
ime unit called Monte Carlo step (MCS). This is a standard method
o consider time in a Monte Carlo process (Bunde et al., 1985; Sales
t al., 1996; Kosmidis et al., 2003b). Under these rules, the drug par-
icle keeps moving until it gets to a site on the exposed border of
he matrix; once there, it is immediately removed from the system
nd it is counted as drug released. The time and the average of the
mount of drug released were registered for 1000 realizations. The
elease of the drug particles from the cylinder was unidirectional;
his is, the round surface and one flat face were blocked, allowing
he drug release only through the remaining flat face, exposed to
he dissolution medium. The release algorithm was carried out until

he number of released drug particles was constant. From the num-
er of released drug particles the fractional drug released, Mt/M∞,

s calculated; where Mt is the drug particles released at a time t and
∞ represents the amount of drug released at a time equal to infi-
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ite. Then, the results of the drug released fraction were analyzed
sing the square root of time law, Peppas and Weibull models.

The calculation of the percolation threshold was made by the
ethod suggested by Villalobos et al. (2005). In this method, the

mount of drug trapped by the excipient carcass at an infinite time
s plotted against the initial drug load, and it is considered that
he inflection point of this curve represents the drug percolation
hreshold. The curve is described by:

t = a′ − a′Erf [b′(C0 − C0c)] (5)

here Erf is the function error, Qt is the dose fraction trapped inside
matrix, a′ and b′ are the constants associated to the process, C0 is

he initial drug load in the matrix and C0c is the drug percolation
hreshold.

. Results and discussion

In Fig. 2 the results for the amount of drug trapped by the matrix
arcass are shown as a function of the initial drug load inside the
atrix, for three diameters of the cylindrical matrix, 27, 37 and 47

n lattice units, l.u. Each one of these devices contained a nucleus
see Fig. 1). A dependence with a sigmoid shape was observed,
ery similar to the behavior found by means of the Monte Carlo
ethod (Villalobos et al., 2005), as well as the in vitro experiments

Leuenberger et al., 1995). In previous studies it has been shown
hat in these curves, the inflection point represents the geometri-
al phase transition; this is the drug percolation threshold of the
ystem (Villalobos et al., 2005). The inflection point of the pre-
ious curves was evaluated by Eq. (5). The fitting was excellent,
hown by the squared of the multiple correlation coefficient higher
han 0.9975 for all the cases. According to this model the perco-
ation thresholds were found at 0.366, 0.358 and 0.348 of initial
ig. 2. Fraction of dose trapped in the matrix (Qt) vs. the initial drug load (C0),
xposing one plane face of the cylindrical device, at various h values. Numerical
esults, dots, and their fitting by means of Eq. (5), solid line. The relative error of Qt

s bounded by 0.004.
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xposed surface, the percolation threshold increases (Villalobos et
l., 2005), finding a percolation threshold of 0.328 for cubic lat-
ices exposing only two opposite faces. This value is lower than the
ne obtained for the matrices in the present research; this behavior
an be explained by the insertion of the inert excipient nucleus. The
resence of the inert nucleus inside the matrix medium interferes
ith the connectivity of the system; therefore, a higher amount of
rug is needed to percolate the system. However, it is important to
mphasize that in the present work as the matrix size increases,
he percolation threshold decreases. This behavior is a result of the
nite size of the system. In fact, we expected that when the size
f the system tends to infinite, the percolation threshold goes to
.3116. However, due to the fact that the pharmaceutical practice
equires the use of finite-size devices, it is very important to know
he influence of the system size on the transport properties of the

edium.
In this research, the cylindrical matrices were allowed to release

he drug only through one flat face, this means that the circular sur-
ace and one flat face were blocked. All this leads to one-directional
elease model, supposition assumed by square root time model. In
able 2 the regression analysis for the

√
t-kinetics is shown. The

tting to the model was performed considering the released drug
raction up to 0.6, in order to avoid errors due to depletion. Accord-
ng to the regression analysis it can be said that the matrix systems

ith C0 of 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 show a lineal behavior for
t/M∞ vs.

√
t, which implies that the release is taking place from

uclidean space. The previous profiles are associated to two factors
hich are: The initial drug load in the matrix and the diffusion bar-

ier generated by an increase in the excipient fraction. On the other
and, at initial drug loads of 0.30, 0.35 and 0.40, the determination
oefficients for the amount of drug released vs. the square root of
ime, were found at an interval of 0.87–0.98, which shows a reg-
lar fitting to the

√
t model. At initial drug loads of 0.35 and 0.40,

alues near the drug percolation threshold, a great amount of the
rug is inserted inside the percolation cluster. It has been demon-
trated that the percolation cluster presents a fractal structure,
hich makes the matrix space a macroscopic non-homogeneous
edia. Under these conditions, the diffusion coefficient does not

et constant and in consequence, in these systems, the behavior of
he released fraction vs. the square root of the time is non-linear.

hen the initial drug load is lower than 0.35 the system is below
he drug percolation threshold. Under this condition the drug forms
nite aggregates which are dispersed inside a continuous medium
excipient matrix); therefore, the only particles that are released
re those connected to the surface of the tablet; leaving, as a conse-
uence, a great amount of the initial drug load encapsulated inside
he matrix carcass. Therefore, the released fraction of the drug is
ery small due to an incomplete release. In this case, the transport
f drug by diffusion from the matrix carcass is minimum and as a
onsequence, there is not a good fitting to the

√
t model.

Fig. 3 shows the value of the Higuchi constant as a function of
he initial drug load inside the matrix. In this figure it is clearly
hown that when the initial drug load starts from 0.10 and tends
o the concentration corresponding to the percolation threshold,
he value of the Higuchi constant decreases drastically. This is due
o the fact that a change takes place in the matrix conformation,
oing from a non-connected or disperse system to a continuous
ne. Later, above the drug percolation threshold and increasing C0,
H also increases but in a gradual manner, because the change in
he value of kH is mainly associated to the diffusion barrier settled

y the amount of excipient in the matrix space and since the matrix
as a binary composition this barrier decreases when C0 increases.

Table 3 shows the regression analysis for the power law. It is
mportant to note that this model is valid up to a released fraction
f 60%, so the release data used to obtain the coefficients for this

t
t
t
s
w

ig. 3. Parameter kH vs. the initial drug load for several h values. These results were
btained by exposing one plane face of the cylindrical device. Bars represent the
EM.

quation where those corresponding up to ≤60% of release fraction.
n this table, while reviewing the exponent associated to the time,
alues between 0.440 and 0.594 were found for initial drug loads
f 50–100%, which are associated to Fickian-type mass transport;
his is, the drug transport is associated only to a diffusive process
n a macroscopically homogeneous medium.

For initial drug loads of 35% and 40%, time exponents of 0.284
nd 0.382 were found. Based onto the classical analysis of diffusion,
he previous data correspond to an anomalous diffusion. Besides,
ccording to the findings described by Bonny and Leuenberger
1991), at the percolation threshold the exponent n is close to 0.2.
n our case, at the closest concentration to the percolation thresh-
ld C0 = 0.35, the values found for n were 0.323, 0.288 and 0.284
or the matrices with diameters of 27, 37 and 47 l.u., respectively.
his anomalous behavior commonly occurs in the matrix type phar-
aceutical forms where more than one transport mechanism is

nvolved, such as erosion, swelling, etc. However, in our simulation
he only transport mechanism involved is diffusion, so the devia-
ion from 0.5 is due only to the heterogeneity of the system. In Fig. 4,
drastic change in the tendency of the value of n is observed around

he drug percolation threshold. This must be associated to the phase
ransition that suffers the matrix system at this composition.

In the previous sections we performed the analysis of the release
rofiles until a drug released fraction of 60%, obtaining a good cor-
espondence to the Higuchi model and the power law in systems
ith initial drug loads from 50% to 100%. However, the fitting of the

elease profiles to the mentioned two models differs significantly
hen Mt/M∞ is above 60% and in matrices with an initial drug load

qual to or under 40%. The Weibull equation has been successfully
sed to describe the release from fractal spaces as well as from
uclidean ones (Papadopoulou et al., 2006). So, in this research
he Weibull equation was also used to study the profiles of drug
eleased from the matrices created for this case. In Fig. 5 the release
ata obtained by simulation for the different matrix sizes and its
tting to the Weibull model are shown. In this figure it is observed

hat for systems with a high initial drug load there is a good fit-
ing between the release results and the Weibull model. In Table 4,
he results for the non-linear regression to the Weibull model are
hown; to get such results, the release data up to 90% of Mt/M∞
ere used. From this data a good fitting (r2 > 0.99) for the systems
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Table 2
Evaluation of the dissolution data according to the square root time law.

C0 Matrix diameter

27 l.u. 37 l.u. 47 l.u.

r2 kH r2 kH r2 kH

0.10 0.976 0.241* 0.977 0.241* 0.977 0.241*
0.20 0.986 0.174* 0.986 0.170* 0.987 0.170
0.30 0.880 0.037* 0.883 0.023* 0.906 0.019*
0.35 0.939 0.008* 0.898 0.003 0.959 0.001
0.40 0.965 0.004 0.976 0.003 0.989 0.002
0.50 0.992 0.007 0.991 0.005 0.995 0.004
0.60 0.996 0.010 0.994 0.007 0.995 0.006
0.70 0.997 0.012 0.996 0.009 0.997 0.007
0.80 0.998 0.014 0.997 0.010 0.999 0.008
0.90 0.998 0.016 0.997 0.012 1.000 0.009
1.00 0.998 0.017 0.998 0.013 1.000 0.010

C0, initial drug load; l.u., lattice units; r2, squared correlation coefficient; kH , constant defined in Eq. (1). The relative error of kH is bounded by 0.03, except that data marked
with *, in that case the relative error is bounded by 0.083.

Table 3
Evaluation of the dissolution data according to the power law.

C0 Matrix diameter

27 l.u. 37 l.u. 47 l.u.

r2 n r2 n r2 n

0.10 0.994 0.762* 0.993 0.760* 0.993 0.759*
0.20 0.980 0.696* 0.981 0.688* 0.982 0.686*
0.30 0.906 0.430* 0.902 0.390* 0.909 0.348*
0.35 0.961 0.323 0.967 0.288 0.992 0.284
0.40 0.984 0.351 0.989 0.358 0.994 0.382
0.50 0.990 0.440 0.992 0.441 0.995 0.449
0.60 0.990 0.486 0.992 0.480 0.995 0.492
0.70 0.990 0.518 0.992 0.511 0.996 0.523
0.80 0.989 0.544 0.992 0.536 0.997 0.553
0.90 0.989 0.563 0.992 0.554 0.998 0.576
1 .992 0.565 0.998 0.594

C t defined in Eq. (2). The relative error of n is bounded by 0.03, except that data marked
w
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.00 0.989 0.578 0

0, initial drug load; l.u., lattice units; r2, squared correlation coefficient; n, constan
ith *, in that case the relative error is bounded by 0.064.

ith C0 ≥ 0.60 is observed; below this composition the fitting to
he Weibull model is regular. The values of b for the matrices with
nitial drug load of 10% and 20% are found between 0.562 and 0.882
or the three different matrix sizes. These values of b are the highest
f the studied systems. This behavior can be explained according
o the following. In this case, the only particles that contribute to
he release are those included in a drug cluster that is in direct con-
act with the external medium. At these drug loads, most of the
rug particles are encapsulated in the matrix carcass, resulting in
small M∞. This way, the drug clusters that are in contact with the
issolution medium are released quickly and independently of the

nternal morphology of the porous space, making this kinetics the
astest compared to the kinetics at higher concentrations. This way

t/M∞ quickly reaches its maximum value which is associated to
igher b values.

The release results for the matrix with C0 = 0.35 and diameter
f 27 l.u. are adequately described by the Weibull model, which is
onfirmed by the determination coefficient of 0.992. However, for
he matrices with diameters of 37 and 47 l.u., at the same concen-
ration of C0 = 0.35, the determination coefficients were 0.986 and
.977, respectively. These matrices are very close to the drug perco-

ation threshold, forming a fractal media, morphologically similar
o a percolation cluster. At this composition of the matrix system

he values obtained for b are: 0.353, 0.364 and 0.434 for the matri-
es with diameters 27, 37 and 47 l.u., respectively. According to
apadopoulou et al. (2006), when the release takes place from a
edium at its percolation threshold, b takes values between 0.35

nd 0.39. The values of b for the matrices of 27 and 37 l.u. fall within

Fig. 4. Parameter n vs. the initial drug load for several h values. These results were
obtained by exposing one plane face of the cylindrical device. Bars represent the
SEM.



L. Martínez et al. / International Journal of Pharmaceutics 369 (2009) 38–46 43

F s, and
l 0.30 (�
C y 0.01

t
f
d
f
f
a
O
u
2
f
n
t
f
(
n
t
t
t
i
E
a
d
l
t
t
s
i
e
a

m
b
a

t
d
a
O
f
i
K
o
c
t
o
t
S
t
t
s
t
a
a
i

T
E

C

0
0
0
0
0
0
0
0
0
0
1

C
d

ig. 5. Release profiles from one plane face of cylindrical device, at various h value
ines are the corresponding fitting by Weibull model. C0 = 0.10 (*), C0 = 0.20 (–), C0 =
0 = 0.90 ( ), C0 = 1.00 (�). The relative error of the fraction released was bounded b

his interval; however, the value of b for the matrix of 47 l.u. differs
rom the proposed interval. The non-concordance of the simulated
ata with the b interval found by Papadopoulou, is explained by the

act that the interval determined by Papadopoulou was obtained
or a release kinetics from a cluster at its percolation threshold in
square lattice, while in our case the lattice is three-dimensional.
n the other hand, at an initial drug load of 40% the obtained val-
es for b are: 0.454, 0.481 and 0.507 for the matrices of diameters
7, 37 and 47 l.u., respectively. In this case, the porous media is
ound at a transition state from a fractal space (macroscopically
on-homogeneous) to Euclidean space. For the initial drug concen-
rations from 50% to 100%, the values of b are found at an interval
rom 0.53 to 0.66; these values, according to Papadopoulou et al.
2006) indicate that the medium is disordered, macroscopically
on-homogeneous, but different from that found at the percola-
ion threshold. This implies that both, the transport properties of
he system and the homogeneity of the medium, are affected by
he inert nucleus inserted inside the matrix. This is, systems with
nitial drug loads equal or higher to 50% the medium should be
uclidean space; however, the insertion of the inert nucleus gener-
tes properties of non-homogeneity in the system. This last result
iffers with the findings of the square root of time model and power

aw model. This difference is due to the fact that the
√

t model and
he power law model use release data of up to 60% of Mt/M∞, while

he Weibull model analysis used data of up to 90% of Mt/M∞. In this
ense the

√
t model and the power law model are affected by the

nert nucleus in the final portion of the analyzed data; for which the
ffect of the inert nucleus, that affects the release data notoriously
bove 60% of Mt/M∞, is not appreciated. In the case of the Weibull

b
i
i
t
i

able 4
valuation of the dissolution data according to the Weibull function.

0 Matrix diameter

27 l.u. 37 l.u.

r2 a b r2

.10 0.994 0.155* 0.882 0.995

.20 0.945 0.157* 0.597* 0.945

.30 0.975 0.097* 0.392 0.980

.35 0.992 0.044 0.353 0.986

.40 0.980 0.012 0.454 0.973

.50 0.990 0.011* 0.530 0.987

.60 0.994 0.010* 0.568 0.993

.70 0.996 0.010* 0.596 0.995

.80 0.997 0.010* 0.619 0.997

.90 0.997 0.009* 0.637 0.997

.00 0.998 0.009* 0.651 0.997

0, initial drug load; l.u., lattice units; r2, squared correlation coefficient; a and b, constan
ata marked with *, in that case the relative error is bounded by 0.085.
different C0. The symbols represent the Monte Carlo simulation data, while solid
), C0 = 0.35 (O), C0 = 0.40 (+), C0 = 0.50 (�), C0 = 0.60 (♦), C0 = 0.70 ( ), C0 = 0.80 (×),

.

odel, when using a wider portion of the release data, it is affected
y the presence of the inert nucleus and the effect is reflected in a
nd b constants of this model.

In Table 4, it can be observed that in matrices of composition in
he interval C0 of 35–100% the value of b increases when the initial
rug load in the matrix increases. As stated by Papadopoulou et
l. (2006), this behavior is associated to the medium homogeneity.
n the other hand, at the same interval of C0, the constant a was

ound to decrease when the initial drug concentration in the matrix
ncreases. The behavior of b found here agrees with the results from
osmidis et al. (2003b); however, the behavior of a differs from the
ne found by the same author, which is explained as follows. In the
ase of Kosmidis et al. (2003b), they worked with Euclidean geome-
ries, without the presence of excipient; this way, all the sites placed
n the surface are exit sites. Then, since there is no excipient inside
he matrix, the movement of the drug particles takes place easily.
o, the drug release from this type of devices happens quickly, and
he fitting to the Weibull model is good, both at the beginning of
he experiment and at the end of the process. In our case, the exit
ites are only those placed on the matrix device surface that are
aken by the drug at the beginning of the experiment, and which
re left empty once the drug is released to the external medium
nd they will form the porous space through which the drug that is
nside the matrix will go out. The number of leak sites is represented

y Nleak. In Fig. 6 the behavior of the proportion Nleak/Ntotal vs. C0
s shown. Here, we can observe that by increasing C0, Nleak/Ntotal
ncreases proportionally, which is associated to more sites where
he drug can be released generating, as a consequence, an increase
n the release rate by the increase of C0. On the other hand, the

47 l.u.

a b r2 a b

0.156* 0.882 0.995 0.156* 0.882
0.156* 0.587* 0.946 0.165* 0.562*
0.090 0.370 0.982 0.086 0.336
0.021 0.364 0.977 0.006 0.434
0.007 0.481 0.974 0.004 0.507
0.007* 0.536* 0.984 0.005* 0.554
0.007* 0.565 0.992 0.005* 0.580
0.007* 0.590 0.995 0.005* 0.605
0.007* 0.610 0.997 0.004* 0.629
0.007* 0.626 0.998 0.004* 0.650
0.007* 0.636 0.998 0.004* 0.668

ts defined in Eq. (3). The relative error of a and b are bounded by 0.03, except that
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matrices of 27, 37 and 47 l.u., respectively. The relative error of these
data is bounded by 0.03. It has been proposed that these constants
of Weibull differential equation are related with the constants of
its integrated form, Eq. (3), as follows: a = k′/m and b = 1 − m. With
ig. 6. Parameter Nleak/Ntotal vs. the initial drug load for several h values. These results
ere obtained by exposing one plane face of the cylindrical device. The relative error

f Nleak/Ntotal was bounded by 0.0005.

resence of the inert nucleus inside the matrix slows the drug dif-
usion within the matrix. In this scenario, the release of the drug is
overned greatly by the diffusion through a complex porous space,
imited besides by the presence of the inert nucleus, which makes
he release from the system slower compared to those studied by
osmidis et al. (2003b). So, the b value determines the release pro-
le throughout the release process. However, this fitting increases
he value of a. This way, the Weibull model describes conveniently
t long times, but at short times, there are differences between the
ata obtained by means of simulation and the fitting curve. These
ifferences are minimal when the initial drug load is equal to or
igher than 0.50, which agrees with the findings of Kosmidis et al.
2003b), because the matrices with C0 equal to or higher than 0.50
end to be Euclidean, proved by the value of the fractal dimension,
hich tends to three for these systems. On the other hand, the dif-

erences between the data obtained by simulation and the fitting
urve are obvious around the drug percolation threshold due to the
ractal structure presented by the porous space.

In general, it was found that when the size of the matrix
ncreases, the drug release kinetics gets slower. This behavior is
ue to the relation Nleak/Ntotal, which is proportional to the specific
urface of the cylinder (Kosmidis et al., 2003b), it decreases as the
atrix size increases (see Fig. 6). In this case, there are less exit

ites for more particles. Furthermore, when the size of the matrix
ncreases, the drug particles have to go through a longer distance
o be able to leave the matrix carcass. In addition, in our case, there
re two more obstacles that complicate the particle trajectory even
ore. These obstacles are the inert nucleus that is located in the

entral zone of the matrix, and the blocked surface.
Figs. 7 and 8 show the behavior of the constants a and b for

he fitting curves to the Weibull model. There, it can be observed
hat similarly to what happens with the constants corresponding
o the square root of the time model and the power law model
see Figs. 3 and 4), when the initial drug load is close to the per-
olation threshold, the parameters a and b of the Weibull equation

how a minimum value. This is further evidence that the drug at
his concentration presents, within the matrix, a phase transition
rom disperse (discontinuous) to a continuous, highly connected

edium.

F
w
t

ig. 7. Weibull exponent a vs. the initial drug load for several h values. These results
ere obtained by exposing one plane face of the cylindrical device. Bars represent

he SEM.

Fig. 9 presents another way to investigate the validity of the
ractal kinetics assumption. In this figure the results of (dNt/dt)Nt

s. time are shown. Due to the fact that a linear tendency is recov-
red we can say that f(t) of Eq. (4) is described by a power relation
f the form t−m. This behavior has been found by other researchers
Kosmidis et al., 2003a; Villalobos et al., 2006a). From this relation
t was possible to determine constants k′ and m for each system
f this work. For example, in systems with C0 = 0.35 values of k′ of
.014, 0.009 and 0.003, and m 0.624, 0.649 and 0.575 were found for
ig. 8. Weibull exponent b vs. the initial drug load for several h values. These results
ere obtained by exposing one plane face of the cylindrical device. Bars represent

he SEM.
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ig. 9. Log–log plot of (dNt/dt)/Nt , defined by Eq. (4), as a function of time. Symbols
epresent numerical results, l = 27 l.u.: C0 = 0.35 (*), C0 = 0.50 (�); l = 37 l.u.: C0 = 0.35
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hese relations and the found values of k′ and m the correspondent
alues for a and b were calculated, finding a values of 0.023, 0.013
nd 0.005, and for b of 0.376, 0.351 and 0.425 for systems of 27, 37
nd 47 l.u., respectively. These values are close to the ones found
ith Eq. (3) (see Table 4). This tendency was similar for the other

ystems studied here. Thus, it is shown that Weibull constants of
qs. (3) and (4) are actually related. Another parameter that has
een useful to describe fractal kinetics is the spectral dimension
Villalobos et al., 2006a). This parameter evaluates the heterogene-
ty present in a porous medium by relating the transit of a random
alk and the fractal dimension of the media (Kopelman, 1989). It
as been proposed that this value can be obtained directly from
. This is how, according to the previous discussion, the spectral

imension can be also estimated from the b value of the Weibull
unction. Therefore constant b must contain information about
tructural and transport properties of the matrix platform.

. Conclusions

The simulation of drug release process from matrix media, by
eans of Monte Carlo methods, has a wide field of study. When it

s used in conjunction with the percolation theory, it can explain
nd solve problems related to the design of matrix type pharmaceu-
ical forms. Additionally, those concepts can be applied to perfect
nd facilitate the development of these pharmaceutical forms. Fur-
hermore, partial dose lost could be avoided by understanding the
raction of the dose trapped by the matrix carcass vs. the initial drug
oad.

In the present research, by means of Monte Carlo methods, it was
ossible to simulate nucleated matrix systems in diverse scenarios
nd determine the transport properties of the drug in the corre-
ponding media. It was found that the amount of drug trapped by
he matrix carcass is a function of the initial drug load inside the
atrix, as well as the specific surface of the matrix system that is in
ontact with the dissolution fluid. The insertion of an inert nucleus
enerated an increase in the drug percolation threshold in relation
o the value reported by the bibliography, this difference is due to
he finite and rather small size of the systems in study as well as to
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he fact that the lattice in use is not exactly cubic. It was also shown
hat during drug release from matrix platforms the insertion of an
nert nucleus interfered with the drug exit, generating a decrease
n the release kinetics. It was determined that the unidirectional
elease from a macroscopically homogeneous medium below 0.6
f Mt/M∞ is adequately described by a Fickian transport. When the
rug release took place from a macroscopically non-homogeneous
edium, the transport mechanism was anomalous. The Weibull
odel was useful to describe the drug release profile up to 0.9 of
t/M∞. Besides, with the Weibull model it was possible to deter-
ine the heterogeneity of the medium due to the presence of the

nert nucleus; this was not possible by using the square root of
he time model or the power law model. It was found that release
inetics of the drug changes drastically in the concentrations near
he percolation threshold. This change can be seen in the constants
ssociated to the respective kinetics model. This presents another
vidence of the phase transition that the matrix system undergoes
t the percolation threshold. Finally, the Weibull equation shows
onsistency with the theoretical predictions under the framework
f classical fractal kinetics.

ppendix A. Nomenclature

constant associated to the Weibull equation
′ dimensionless real number

diffusing particles
constant associated to the Weibull equation

′ dimensionless real number
static trapping sites

0c initial drug load corresponding to drug percolation
threshold

0 initial drug load, fraction of sites occupied by drug
matrix porosity

rf function error
(t) fraction of drug particles that are able to reach an exit in

a time interval
height of the cylindrical matrix
constant release of the power law

′ constant release of the differential Weibull equation
H constant release of the

√
t law

height of the inserted cylindrical nucleus
.u. lattice units

exponent time of the differential Weibull equation
CS Monte Carlo step, time unit
t drug released amount at time t
∞ drug released amount at infinite time
t/M∞ fractional drug released

exponent release of the power law
leak number of leak sites
M number of sites occupied by the drug-excipient matrix
N number of sites occupied by the inert-material cylindrical

nucleus
t number of sites occupied by drug at a time t

total number of sites that form the release device
2 squared correlation coefficient
EM standard error of the mean

time
t dose fraction trapped inside a matrix
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